SEARCHING: IAVCEI





JA01 Machine Learning in Geo-, Ocean and Space Sciences (IAGA, IAVCEI, IAHS, IASPEI, IAMAS, IAPSO)

Convener(s): Peter Wintoft (Sweden, IAGA)

Co-Convener(s): Hristos Tyralis (Greece, IAHS), Dave Reusch (USA, IAMAS), Istvan Szunyogh (USA, IAMAS), Fatma Jebri (UK, IAPSO), Gesa Maria Petersen (USA, IASPEI), Silvia Massaro (Italy, IAVCEI)

Description
Modern artificial intelligence (AI), machine learning (ML) and deep learning (DL) techniques are in the process of transforming many different fields of geosciences including for example seismology, the modelling of hydrological systems, space weather studies and oceanography. The progress in the development of ML algorithms combined with the increasing availability of geophysical data and computational power deliver a great promise for transformational advancements with the novel computational techniques. In this joined session, we invite presentations on a broad variety of AI, ML and DL methods, that both, establish new or improve commonly performed data processing, detection, clustering, interpretation, prediction and imaging tasks. In particular, we welcome contributions on the integration of ML techniques to improve the quality of oceanographic, geosciences and space sciences research approaches. The goal of the session is to establish the state of AI, ML and DL across multiple geoscientific fields, and to pave the path forward in taking full advantage of the exciting developments in ML/DL.



Go to the top of the page



JA04 Marine Geodesy and Geophysics – Opportunities & Hazards (IAGA, IAG, IASPEI, IAVCEI)

Convener(s): Sebastian Hölz (Germany, IAGA)

Co-Convener(s): Valérie Ballu (France, IAG), Heidrun Kopp (Germany, IASPEI), Paraskevi Nomikou (Greece, IAVCEI)

Description
More than 70% of the Earth surface is covered by ocean. The seafloor is the critical interface where geology, climate, ecosystems, and human activities converge. Yet, a high percentage of the ocean’s seafloor and the subsurface below the seafloor remain unexplored and is both a source of opportunities in terms of unexplored resources (e.g. massive sulfides and hydrothermal fluids) as well as hazards (e.g. due to earthquakes, tsunamis, volcanoes or the exploitation of marine mineral resources). A responsible and sustainable use of resources and mitigation of geohazards require an enhanced knowledge about short- and long-term processes that shape the current sea floor, as well as about its role in the Earth System. Innovative methods help us to better identify and monitor structures, which can be related to geohazards as well as resources. This session invites all contributions of marine geophysical and geodetic research ranging from small to large scales aimed at characterizing structures and dynamics of the Earth’s interior and the seafloor. Solicited fields of research include instrumentation, survey design, data acquisition and novel data processing, visualization, modeling and interpretation procedures. We invite contributions from various fields of offshore geophysical investigations including seismological and seismic, electromagnetic methods as well as contributions from seafloor geodesy.



Go to the top of the page



JA08 Ground and Satellite Electromagnetic Observations Related to Earthquakes, Tsunami's and Volcanic Activity (IAGA, IASPEI (EMSEV), IAVCEI)

Convener(s): Ramesh Singh (India/USA, EMSEV)

Co-Convener(s): Ken'ichi Yamazaki (Japan, EMSEV), Qingjua Huang (China, IASPEI/EMSEV), Takeshi Hasimoto (Japan, IAVCEI/EMSEV)

Description
The earthquakes, tsunamis, and volcanic eruptions are associated with deep ground and the ocean, and the effects are observed through various observing systems deployed on the ground surface, in the borehole, and the ocean. The multispectral satellites and airborne and drone sensors provide information at a high spatial and temporal resolution of the Earth, Ocean, meteorological, atmosphere, and ionosphere. The global navigation satellite system (GNSS) has proved an added advantage globally to observe signals associated with these natural hazards. Recent observations and data analysis has shown a strong coupling between land, ocean, atmosphere, meteorological and ionospheric parameters with earthquakes, tsunamis, and volcanic eruptions. The changing climate system is believed to play an important role in the slow deformation and stress changes and frequency of these disasters. The session invites contributions based on laboratory, modeling, all kinds of ground and field, borehole, and satellite data analysis to understand the physical mechanism associated with these natural hazards.



Go to the top of the page



JC06 Mountain Cryosphere Hazards (IACS, IAVCEI, IASPEI)

Convener(s): Holger Frey (Switzerland, IACS/GAPHAZ)

Co-Convener(s): Michele Koppes (Canada, IACS/GAPHAZ), Mylene Jacquemart (Switzerland, IACS/GAPHAZ), Fabian Walter (Switzerland, IASPEI), Roberto Sulpizio (Italy, IAVCEI)

Description
High mountains across the globe have been undergoing significant changes in natural hazards over the last few decades. Rapid warming has caused changes in the mountain cryosphere at unprecedented rates, affecting geomorphic processes beyond the ice, with significant impacts on landscapes and ecosystems. Cryospheric hazards are also undergoing rapid changes in mountains worldwide, often beyond historical precedence. Risks associated with all types of mass movements in mountain regions are increasing due to changes in the magnitude and frequency of hazards and increasing socio-economic development, which affects both exposure to and vulnerability of people and infrastructure. In this session, we invite contributions on all forms of hazards and risks from the mountain cryosphere, including avalanches, landslides, lake outbursts, volcano-ice interactions, earthquakes, permafrost thaw, debris flows, cascading process-chains, and impacts on mountain communities. We welcome case studies; theoretical and conceptual process models; mapping and modelling past, present and future hazards and risks; as well as aspects of disaster risk reduction and management. Contributions that also address the socio-economic drivers of risks are encouraged. 



Go to the top of the page



JG03 Remote Sensing and Modelling of the Atmosphere (IAG, IAGA, IAMAS, IAVCEI,)

Convener(s): Michael Schmidt (Germany, IAG)

Co-Convener(s): Ehsan Forootan (Denmark, IAG), Loren Chang (Taiwan, China, IAGA), Claudia Stubenrauch (France, IAMAS), Fabio Dioguardi (Italy, IAVCEI)

Description

Satellite observations provide a continuous survey of our planet’s surrounding atmosphere, which is structured into distinct layers, according, e.g. to temperature or charge state.

Space weather effects are observed in the magnetosphere, ionosphere, plasmasphere and thermosphere; its impacts and risks are gaining more and more importance in politics and sciences, because the demands of communications and precise positioning are ever increasing in the modern society.

Stratosphere and troposphere and their constituents are essential for life on our planet, and tropospheric water vapour is source of clouds and precipitation, which in turn affect the large-scale circulation through heat transfer. Radiative forcing induced by external factors like changes in aerosol and greenhouse gas concentrations leads to feedbacks which are still an important uncertainty source in modelling climate change. The synergistic use of different instruments and modelling is leading to major advances in the understanding of our climate.

This symposium invites contributions on advances in observing, modelling, and understanding our atmosphere – from troposphere to magnetosphere. Specific topics are:

- (near) real-time approaches to monitor and forecast the atmospheric state

- combination of various observation techniques and improvement of the representation of atmospheric key parameters in models

- monitoring the Earth by Global Navigation Satellite Systems (GNSS) and other measurement techniques

- studies on space weather research and coupling processes in the upper atmosphere

- aerosol, cloud, precipitation and radiation processes as well as interactions in the climate system

- data assimilation, model-data fusion, and artificial intelligence techniques for advancing modelling and prediction of atmospheric variables

- use of synergetic satellite observations and modelling for a better understanding of cloud processes and feedbacks

Possible Sessions:

1. Upper Atmosphere: Ionosphere, Thermosphere, Plasmasphere, Magnetosphere

2. From Ionosphere to Troposphere

3. Lower Atmosphere: Monitoring the Earth by Global Navigation Satellite Systems and other measurement systems

4. Lower Atmosphere: Water Vapour, Clouds, Precipitation and Radiation

5. Lower Atmosphere: Monitoring of anthropogenic and natural aerosols and their radiative forcing






Go to the top of the page



JG07 Modern Gravimetric Techniques for Geosciences (IAG, IAVCEI, IAPSO, IASPEI)

Convener(s): Jürgen Müller (Germany, IAG)

Co-Convener(s): Chris Hughes (UK, IAPSO), Rudolf Widmer-Schnidrig (Germany, IASPEI), Emily Montgomery-Brown (USA, IAVCEI)

Description
New tools for gravimetric Earth observation on ground and in space are being developed in quantum physics that enable novel applications and measurement concepts in the geosciences. We invite presentations to illustrate the principles and state of the art of these novel techniques, like quantum gravimetry, relativistic geodesy with clocks or chronometric levelling, advanced intersatellite tracking and others. These advanced techniques will open a door to a vast bundle of applications. Terrestrial mass variations can be monitored at various scales providing unique information on the related climate change processes. We especially welcome presentations on further applications of those new methods in the geosciences. For example, quantum gravimeters are beneficial for monitoring mass changes, e.g. at volcanos or of the local groundwater. Clock networks provide differences of physical heights and can monitor mass and height variations, e.g., at tide gauges, to disentangle land deformation and sea level rise. Based on that advanced quantum technology, improved observation of mass changes from space will give access to smaller (but relevant) effects like those related to permafrost thawing.

Solicited speaker: Daniele Carbone (INGV - Sezione di Catania, Osservatorio Etneo, Italy) - Experimentation of new technologies for volcano gravimetry at Mt. Etna

Go to the top of the page



JH04 Anthropocene: Perspectives From and Within Geophysics (IAHS, IAMAS, IACS, IASPEI, IAVCEI, IAG, IAPSO)

Convener(s): Christophe Cudennec (France, IAHS)

Co-Convener(s): Richard Essery (UK,IACS), Melita Keywood (Australia, IAMAS/iCACGP), Mark Lawrence (Germany, IAMAS/iCACGP), Domenico Giardini (Switzerland, IASPEI), Roberto Sulpizio (Italy, IAVCEI), Catia Domingues (UK, IAPSO)

Description

As the International Union of Geological Sciences considers the Anthropocene from a stratigraphic perspective, and as other communities are considering a wider definition (see the ICSU-ICS intermediate synthesis in 2016, https://www.sciencedirect.com/journal/global-environmental-change/vol/39/suppl/C) IUGG has to reconsider the concept and to renew its contribution. This session welcomes any communication in that perspective, including about great acceleration, planetary boundaries, change detection and attribution, climate change and other changes to the atmosphere-ocean-cryosphere-hydrosphere system, such as erosion-sedimentation, man-induced seismicity and man-driven geomorphology, along with related farther-reaching topics such as One Health; and assessing these issues and science-informed policy options for mitigation and adaptation together with the socio-geosciences.





Go to the top of the page



JH06 Education & Outreach in Geosciences (IAHS, IASPEI, IAGA, IAG, IAVCEI, IACS, IAMAS, IAPSO)

Convener(s): Christophe Cudennec (France, IAHS)

Co-Convener(s): Fabien Maussion (Austria, IACS), Markku Poutanen (Finland, IAG), Katia Pinheiro (Brasil, IAGA), Tereza Kameníková (Czech Republic, IAGA), Thomas Spengler (Norway, IAMAS), Angela Pomaro (Italy, IAPSO), Raju Sarkar (Bhutan, IASPEI), Natalia Pardo (Colombia, IAVCEI)

Description
Sharing scientific knowledge and methods through education and outreach is of high importance to support the societal transition in terms of sustainability, development, and security. Initial and life-long education, training in operational services, and capacity development within institutions and society are facing many challenges, when dealing with environmental and societal changes, disaster risk reduction, and the evolution of techniques along the data – information – knowledge – decision support chain. This symposium welcomes conceptual developments as well as practical study cases from geoscientists, as well as from didacticians and knowledge brokers. The variety of approaches across disciplines and across the diversity of the geosciences will provide a collective overview on education and outreach activities the basics and variants in our fields. The symposium also encourages sharing of lessons learned from the enhanced digitization induced by the pandemic and from the ongoing digital revolution, showcasing perspectives of the knowledge society and the Open Science paradigm.



Go to the top of the page



JM05 Earth System Models: Assessing the Earth System’s State and Fate From Regional to Planetary Scales (IAMAS, IAHS, IACS, IAPSO, IAVCEI?)

Convener(s): François Massonnet (Belgium, IAMAS)

Co-Convener(s): Sophie Nowicki (USA, IACS), Richard Petrone (Canada, IAHS), Anna von der Heydt (Netherlands, IAPSO)

Description
Earth System Models (ESMs) have become a cornerstone in geosciences, being used for process understanding, detection and attribution of climate signals, prediction from sub-seasonal to millennial time scales, regional downscaling, and impact analyses. Each generation of ESMs presents refinements compared to the previous one: from one cycle of model development to the next, spatial resolution increases, more components of the Earth system are included, and new processes become explicitly represented. Also, observations and data-driven approaches are increasingly used within ESMs to better predict high-impact events. This symposium encourages contributions dealing with the many facets of Earth System Model development, evaluation, and application, including but not limited to: modeling results from the Coupled Model Intercomparison Project Phase 6, development and assessment of models making use of recent Earth observations from ground- and space-based measurements, prediction of climate on seasonal to centennial timescales, climate change detection and attribution, regional-scale climate modeling and process analysis, high-resolution climate modeling, and subgrid scale parameterization development including statistical and machine learning techniques. Submissions on the latest advances in coupled aspects of the Earth system are particularly encouraged.



Go to the top of the page



JP05 Tsunamis (IAPSO, IASPEI, IAVCEI, IAMAS, IAG)

Convener(s): Yuichiro Tanioka (Japan, IASPEI)

Co-Convener(s): Maitane Olabarrieta (USA, IAMAS), Diana Greenslade (Australia, IAPSO), Maria Ana Baptista (Portugal, IAPSO), Alexander Rabinovich (Russia, IASPEI), Mohammad Herdarzadeh (UK, IASPEI), Yuichi Nishimura (Japan, IAVCEI)

Description
Tsunamis are one of the most devastating natural disasters, with the potential to cause tremendous damage along coastlines around the world. Catastrophic tsunami events of this century, such as the 2004 Indian Ocean and 2011 Tohoku tsunamis, have demonstrated the increasing risk of disasters for coastal population and infrastructure. As a response to these deadly tsunamis, many new tsunami forecast and warning capabilities have been developed and implemented. The 2018 Sulawesi and Krakatau tsunamis have demonstrated that tsunamis caused by mechanisms other than great earthquakes must also be considered. The more recent 2022 large volcanic eruption in Tonga generated air-sea coupled wave causing damage along the coast around the Pacific. Sea-level rise caused by global warning also presents new challenges for tsunami science. The IUGG symposium will discuss all aspects of tsunami science including: theoretical and numerical research on tsunami generation and inundation; development of forecast and warning methods; investigation of geologic records of past events; response, mitigation, and recovery strategies; observational studies, including collation of historical observations; and hazard and risk studies from tsunamis generated by earthquakes, landslides, volcanic eruptions. The symposium will also include a special session on meteo-tsunamis, including the air-sea coupled wave due to the 2022 Tonga eruption, in association with IAMAS.



Go to the top of the page



JS04 Monitoring, Imaging and Mapping of Volcanic Areas (IASPEI, IAG, IAVCEI, IAGA)

Convener(s): Thomas Walter (Germany, IASPEI)

Co-Convener(s): Ronni Grapenthin (USA. IAG), Takeshi Hashimoto (Japan, IAGA), Federico Lucchi (Italy, IAVCEI)

Description
Over 1500 volcanoes are considered active, and are in reach of an estimated 10% of the global population. Volcanoes are curse and blessing for the population, as they are a source of significant hazards difficult to predict, and provide fertile soil and exploitable resources. Thanks to field-constrained eruptive histories of active centers and improved instrumental monitoring on the ground, complemented by high resolution remote sensing and complex modelling, the involved time scales, dimensions of volcanic processes and diversity in eruptive style are much better understood. All this allows identifying the internal structure and unrest, intrusion of magma in reservoirs and dikes, hydrothermal activity and degassing at the surface, and material transport processes to distance. Despite these advances, significant volcano eruptions and location is unpredictable, and the duration, rates, or scale remain largely speculative, as vividly demonstrated for the recent eruptions at Nyiragongo (DR Congo), at Hunga Tonga (SW Pacific), Fagradallsfjall (Iceland), or at La Palma (Canary Islands), and elsewhere. The aim of this joint symposium is to bring together scientists elaborating volcanic areas using monitoring, imaging and modelling techniques, to better understand the past, present, and future of volcanoes, and to access the hazards and benefits of volcanic areas. In particular, we invite contributions using broad techniques from geophysical imaging, seismology, geodesy, as well as from active and passive remote sensing, geochemistry, gas analysis and petrology, in order to exchange on how volcanoes prepare for eruptions, undergo unrest, hydrothermally exhalate during periods of quiescence, and evolve in the short and long term. Moreover, interaction of volcanoes and their surrounding will be discussed in this symposium, trying to better understand and exchange on the role of the tectonics, glaciers, earthquakes, ocean, and climate.



Go to the top of the page



JS05 Real-Time GNSS Data and Products Usage: Interoperability and Management Challenges (IASPEI, IAG, IAVCEI, IAPSO)

Convener(s): Angelo Strollo (Germany, IASPEI)

Co-Convener(s): Antonio Avallone (Italy, IAG), Yuhe Tony Song (USA, IAPSO), Clinton John (Switzerland, IASPEI), Giuseppe Puglisi (Italy, IAVCEI)

Description
The Internet of Things continues to expand with reduced restrictions throughout the Urban Space and enables reliable and simple real-time data streaming even from very remote areas. Such technological developments, alongside the growth in cloud computing, have enabled real-time streaming of GNSS data and products. GNSS data today has mature standards (i.e. RTCM formats) for a wide spectrum of applications (civil and military navigation, science, commercial purposes). On the other hand, GNSS products are domain-specific, requiring expertise of scientists and technical personnel. In the last decade, real-time GNSS products have offered new opportunities for monitoring natural hazards in real-time (i.e. earthquakes, volcanoes, landscapes). To become widely available within existing domain specific processing pipelines these products must be available via standard formats and services. A typical example is real-time satellite orbit and clock data which enables several real-time positioning flavours, from standard precise point positioning and relative positioning to regional augmentation and seismic and geodetic data fusion. These products, available in real-time and via standard formats and services (e.g., seedlink and mseed for seismology) could be game changers within the context of early warning systems for tsunamis, landslides, volcanoes, and other natural disasters, as well as for infrastructural monitoring. This interdisciplinary symposium welcomes contributions outlining recent developments in real-time GNSS applications, in particular the usage of real-time data and products within the geophysics domain. This includes: processing techniques developed for real-time products, augmentation through the addition of new data; data management policies; use case examples, in particular those fostering interoperability; adoption or development of new standard formats. The aim of the symposia is to remove the barriers between scientific domains, foster interoperability, and to welcome discussions that lead towards interdisciplinary technical discussions around common formats and interoperability.



Go to the top of the page



JS06 Joint Inversion of Different Geophysical Data Sets (IASPEI, IAGA, IAG, IAVCEI)

Convener(s): Christel Tiberi (France, IASPEI)

Co-Convener(s): Mareen Lösing, (Germany, IAG), Max Moorkamp (Germany, IASPEI/IAGA), Alexander Grayver (Switzerland, IAGA), Luca D'Auria (Spain, IAVCEI)

Description
The Earth is composed of various materials with different physical properties. Therefore understanding its structure and dynamics requires a combination of multiple observations and complementary tools. For decades now, the joint use of different geophysical and geological datasets in inversion or modelling has become a popular way of investigating Earth structure and dynamics at many different scales. In this symposium, we will address all aspects of research that utilize the combination of multiple datasets in multiple parameter inversion or modelling. This includes methodological concepts to improve the performance of integrative imaging, innovative applications and case studies of these techniques, theoretical developments and multi-scale approaches. We welcome contributions from all disciplines that use data integration for a better quantitative understanding of the structure and dynamics of the Earth, from the subsurface down to its core.



Go to the top of the page



JS08 Advances in Heat Flow Studies: From Fundamental Geodynamic Understanding to Geothermal Energy Applications (IASPEI, IAVCEI (IHFC))

Convener(s): Ben Norden (Germany, IAVCEI)

Co-Convener(s): Ivone Jimenez Munt (Spain, IASPEI), Sukanta Roy (India, IASPEI)

Description
Until the 1950s, terrestrial heat flow was only documented in a few specific areas of the globe. Due to the importance of heat flow determinations in characterizing the Earth’s energy budget, geodynamic processes, and its role in geothermal energy exploration, the need for extensive heat-flow measurements and mapping became clear. Since 1963, the International Heat Flow Commission of IASPEI has been advising on the acquisition of heat-flow data through temperature-depth measurements and thermal properties of rocks in a variety of geologic environments and tectonic regimes. This effort has led to significant advances in heat flow studies that have positively influenced many disciplines, e.g. seismology, magnetism, volcanology, geodynamics, and hydrogeology. It is now widely recognized that understanding the mechanisms of heat transfer in continental and oceanic regions is crucial for better appreciation of the thermal structure of the lithosphere. For example, the depth distribution of earthquakes can be related to the brittle-ductile boundary which is thermally controlled. In polar regions heat flow can exert a key influence on ice-sheet temperature, ice rheology, basal melting, and the consequent mechanical decoupling at the ice-bedrock interface. Other contemporary topics that thermal studies address include climate change, permafrost thawing, and mineral resource evaluation. This symposium marks the 60th anniversary of the International Heat Flow Commission with the goal of highlighting the accomplishments of heat-flow studies, as well as the technological advances in borehole and rock thermo-physical measurements, and their relationship to a wide range of geodynamic processes related to the thermal state. We welcome contributions that describe the results of experimental and theoretical works of any geoscientific discipline and the symposium is designed to provide a platform for the exchange of ideas, methods, and concepts centered on the thermal aspects of the Earth’s interior.



Go to the top of the page



JS09 Early Warning Systems for Geohazards (IASPEI, IAVCEI, IAHS, IAG)

Convener(s): Elisa Zuccolo (Italy, IASPEI)

Co-Convener(s): John LaBrecque (USA, IAG), Maria-Helena Ramos (France, IAHS), Roberto Sulpizio (Italy, IAVCEI)

Description
Natural disasters related to a variety of geohazards (e.g. earthquakes, landslides, volcanic eruptions, tsunamis and floods) constantly pose threats to humankind and ecosystems at large on a global scale. Exposure to geohazards has increased dramatically in recent decades, and climate change has already affected the frequency and severity of weather-related events in several regions of the world. Consequently, social vulnerability has also changed, prompting Civil Protection authorities and decision makers to increasingly focus on disaster mitigation and risk reduction strategies. In this context, Early Warning Systems (EWS) constitute a major tool to improve preparedness and response to geohazards, prevent loss of life, and reduce economic impacts. Increasing the availability and access to multi-hazard EWS and disaster risk information is also one of the global targets set by the Sendai Framework for Disaster Risk Reduction 2015-2030. This Symposium aims at bringing together scientific and operational advances on the development and demonstration of EWS for geohazards. It provides an opportunity for summarizing the progresses in the achievement of the Sendai Framework targets and reporting on latest trends in EWS for a broad range of geohazards. It also includes identifying current gaps and key challenges for the co-design of EWS with stakeholders and end users, and for their practical implementation. The symposium encourages original research and sharing of knowledge, lessons learned and emerging examples of good practice. The goal is to favor a multi-disciplinary discussion and synergies as a basis for commitments aimed at expanding EWS capacities for geohazards. Topics of interest include but are not limited to: (i) monitoring systems for geohazards, (ii) dynamic and evolutionary process modelling; (iii) treatment of epistemic uncertainty; (iv) decision-making strategies; (v) methodologies and tools for (near) real-time risk mitigation; (vi) cost-benefit analysis and evaluation of socio-economic impact; (vii) evaluation of cascading effects; (viii) practical case studies.

Solicited speakers: Simona Colombelli (University of Naples Federico II, Italy), Léo Martire (NASA Jet Propulsion Laboratory, California Institute of Technology, USA), Tim Melbourne (Central Washington University, USA)

Go to the top of the page



JV01 Volcano-Ice Interactions (IAVCEI, IACS)

Convener(s): Shaun Eaves (New Zealand, IACS)

Co-Convener(s): Rosie Cole (New Zealand, IAVCEI)

Description
Interactions between volcanism and the cryosphere are important parts of the evolution of Earth and other planets. Eruptions that occurred beneath glaciers and ice sheets have produced distinctive geological features that yield insight to volcanic hazards or constraint of past glacier extent and palaeoenvironment. Glaciovolcanism is rarely observed directly, thus the knowledge base of this nascent field is largely restricted to information gleaned from the geological record. More recently, these observations have been supplemented with laboratory experiments and monitoring surveys that offer exciting potential to explore the physical parameters of glaciovolcanic processes. This joint-commission symposium aims to promote the interdisciplinary interaction between volcanologists and glaciologists with shared interests in glaciovolcanism. We invite contributions including, but not limited to: i) Field-based observations and interpretations of glaciovolcanic products and processes; ii) Experimental studies concerning the interaction between lava or pyroclasts with ice; iii) Glaciological observations and/or numerical modelling that concern volcanic influences on glacier mass balance or ice flow; iv) Palaeoglaciological studies from volcanic domains; v) Studies of causative links between deglaciation and volcanism; vi) Investigations that address climate and environmental change through glaciovolcanic studies; vii) Monitoring and mitigation of the hazards associated with ice-covered volcanoes on Earth; vii) Investigations aimed at understanding the signals generated by ice-covered volcanoes



Go to the top of the page



JV02 Dispersal of Volcanic Particulates in the Atmosphere and the Oceans (IAVCEI, IAMAS, IAPSO)

Convener(s): Silvia Massaro (Italy, IAVCEI)

Co-Convener(s): Markku T. Kulmala (Finland, IAMAS), Nadia Lo Bue (Italy, IAPSO)

Description
Among the variety of volcanic processes, explosive eruptions are of particular interest for the scientific community, in the light of mitigating their impact on human lives and activities. In fact, the eruption columns formed during these episodes may represent a great hazard for our society. On the ground, livelihoods and infrastructures can be extensively damaged by the fall of pyroclasts of various sizes and shapes. In the air, volcanic clouds pose a serious threat to aviation safety with immediate and long-term effects on aircraft functionalities. In the oceans, volcanic particles may induce both pollution and fertilization, influencing the biology and chemistry of the water. Volcanic hazard assessment is therefore a fundamental step in the evaluation of the risk associated with the presence of ash particles into the atmosphere and the fall of tephra on the ground. In this session we welcome contributions combining numerical modelling, field observation and monitoring of volcanic ash clouds, supporting the assessment of their hazard.



Go to the top of the page



JV03 Hunga Tonga (IAVCEI, IAMAS, IASPEI, IAGA, IAG)

Convener(s): Roberto Sulpizio (Italy, IAVCEI)

Co-Convener(s): Ronan Le Bras (Austria, IASPEI)

Description
The cataclysmic January 15 eruption of Hunga Tonga Hunga Ha’apai presents a rare opportunity for researchers to explore new problems in volcanology, petrology and geochemistry, seismology, tsunamigenesis, infrasonics, and atmospheric science.



Go to the top of the page



JV04 Volcano Seismology (IAVCEI, IASPEI)

Convener(s): Jürgen Neuberg (UK, IASPEI/IAVCEI)

Co-Convener(s): Luca de Siena (Germany, IASPEI)

Description
Analysis of seismic signal is of paramount importance at volcanoes, because they allow to investigate the internal structure of volcanoes and, at the same time, they provide us information about changes in the geophysical state of the volcano. W e welcome in this session any contribution related to seismolgy applied to volcanoes and volcanic systems.



Go to the top of the page



JV05 Strain Localisation and Seismic and Volcanic Hazards (IAVCEI, IASPEI, IAG)

Convener(s): Jürgen Neuberg (UK, IASPEI/IAVCEI)

Co-Convener(s): Philippe Jousset (Germany, IASPEI)

Description
The strain localization is a fundamental process for improving our understanding of the basic physics of earthquake rupture. It is an nterdisciplinary problem that draws on physics, seismology, materials science, engineering, etc. We welcome in this session contributions aimed at highlighting the importance of strain localization in seismology or new techniques in the field.



Go to the top of the page



JV06 Geophysics of Solar System Planets (IAVCEI, IASPEI, IAG, IAGA)

Convener(s): Alessandro Bonforte (Italy, IAVCEI)

Co-Convener(s): Kumiko Hori (Japan, IAGA), Philippe Lognonné (France, IASPEI)

Description
Observations of the distribution, form, and composition of planetary bodies, where subduction, erosion, and vegetation does not obscure surface features. In this session we invite all contributions relating to planetary geology and geophysics, encompassing remote sensing, geomorphology, in-situ or orbital geophysics, sample-based, experimental and numerical modelling, and Earth-analogue studies that utilize planetary data to provide a deeper understanding of this fundamental planetary process.



Go to the top of the page



JV07 The Architecture of the Lithosphere in Volcanic Regions (IAVCEI, IASPEI, IAGA, ILP)

Convener(s): Luca Caricchi (Switzerland, IAVCEI)

Co-Convener(s): Christine Thomas (Germany, IASPEI), Gabi Laske (USA, IASPEI)

Description
The chemical and physical properties of the Earth's lithosphere controls geodynamic processes, the distribution of seismicity and the accumulation and migration of magma to the surface. We welcome research contributions on observations and modeling of lithosphere architecture in volcanic regions as well as the determination of relationships with seismicity, magma chemistry and its transfer to the surface.



Go to the top of the page