SEARCHING: IAPSO



P01 General Topics in Oceanography (physics and biogeochemistry)

Convener(s): Marie Sicard (Sweden)

Co-Convener(s): Alejandra Sanchez-Franks (UK) Alexander Haumann (USA)

Description
This symposium welcomes presentations of new research results in physical and biogeochemical oceanography not included in the other symposia. It explores oceanic processes of global relevance and those specific to different regions of the ocean, such as tropical, subtropical, subpolar, polar, marginal, and coastal seas. Relevant processes include water mass formation and interactions, large-scale and meso-scale circulations, interactions with other Earth system components (land, seafloor, atmosphere, and cryosphere), distribution and cycling of chemical elements and compounds, or pollution. Variability on different space and time scales will be considered and methodological approaches will range from in situ, autonomous, and satellite observations to numerical and laboratory studies.

Solicited speakers: Lijing Cheng (Institute of Atmospheric Physics, Chinese Academy of Sciences, China), Madhavan Girijakumari Keerthi (LOCEAN, Sorbonne Université, France)

Go to the top of the page



P02 Physics and Biogeochemistry of Semi-Enclosed, Shelf Seas, and Coastal Zones

Convener(s): Katrin Schroeder (Italy)

Co-Convener(s): Jianping Gan (China) Osmar Moller Jr (Brazil) Peter Zavialov (Russia)

Description
This interdisciplinary symposium provides a joint forum for oceanographers whose research focuses on physical, chemical, and biological processes in coastal zones, semi-enclosed and shelf seas of the World, as well as their responses to climate change and anthropogenic impacts. These areas are often characterized by complex interactions between land, ocean, and atmosphere, they exhibit rich dynamics driven by a variety of feedbacks and forcing mechanisms. Marginal seas and coastal areas are particularly vulnerable to climate change effects and anthropogenic stressors. Given their limited geographical extension and their sometimes constricted connection to the open ocean, these environments often exhibit shorter timescales in their responses to external forcing: this is why they are widely recognized as natural “laboratories” for studying oceanic processes and interactions between the physical, biogeochemical and climatic spheres. They also play an exceptionally important role in ecosystem services and socio-economic issues and require careful governance measures to avoid or mitigate environmental deterioration. Gathering experts from different regions, the symposium will give a global perspective of the topic through comparison and elucidation of similarities and differences. Contributions on different regions are invited, related to themes such as innovative observational, theoretical, experimental and modeling studies of the hydrodynamics, marine biogeochemistry (e.g., nutrient dynamics, primary production, acidification, algae blooms) and the influence these regional seas and coastal zones exert on the adjacent basins/oceans and on the global scale. Studies of past, present and future climate variability are welcome, as well as interdisciplinary studies on the bio-physical interactions in semi-enclosed and shelf seas.

Solicited speaker: Eleonora Cusinato (Università Ca' Foscari Venezia, Italy)

Go to the top of the page



P03 Ocean Mixing Frontiers

Convener(s): Toshi Hibiya (Japan)

Co-Convener(s): Hans van Haren (The Netherlands) Jae-Hun Park (Republic of Korea)

Description
Ocean mixing plays crucial roles both in the open and coastal ocean, affecting key physical, biological and chemical processes. Mixing in the upper ocean influences the sea surface temperature and hence air-sea interactions which impact global climate change, while mixing in the deep ocean maintains abyssal stratification of the world’s oceans and impacts the global overturning circulation. In coastal oceans, mixing modulates the transport and dispersal of dissolved and suspended materials including pollutants and nutrients. Planktonic ecosystems are controlled by nutrient pumping associated with ocean mixing. In this session, we encourage contributors to present recent findings of ocean mixing obtained through field observations as well as theoretical, numerical, and laboratory studies. Through the related detailed discussions, we would like to confirm how far has our understanding of the ocean mixing processes advanced, defining the new frontier of ocean mixing research to be tackled in the next decade. The session encompasses a wide variety of aspects of coastal and open ocean mixing processes; within the water column from the surface through the interior to the near boundary benthic mixing, including the roles of mixing in the biological processes and productivity of the ocean. Observational, theoretical, and numerical modeling studies are all encouraged.



Go to the top of the page



P04 Storm Surges, Waves, and Coastal Hazards

Convener(s): Thomas Wahl (USA)

Co-Convener(s): Ivan D. Haigh (UK) Marta Marcos (Spain) Aimée Slangen (The Netherlands) Katherine Serafin (USA)

Description
Extreme sea levels (excluding tsunamis) emerge as a combination of regional mean sea level, astronomic tides, storm surges caused by extra-tropical or tropical storms, a dynamic wave component leading to wave-setup and runup, and, in deltas and estuaries, river discharge. Resulting flooding events can have devastating impacts with wide ranging social, economic, and environmental consequences. The 2017 hurricane season in the North Atlantic was only the latest reminder of the vulnerability of low-lying densely populated and highly developed coastlines. In order to plan effective adaptation to coastal flooding hazards it is essential to improve the understanding of the superposition of the different extreme sea level components, and how they are modulated by climate change and variability, individually and in combination. This symposium seeks contributions from studies that have: (i) examined changes in extreme sea levels and waves including the role of climate change and variability (past and future); (ii) undertaken statistical or process-based model analyses of extreme water levels or its individual components; (iii) assessed the various types of impacts (e.g., inundation, erosion, ecosystem degradation); (iv) or taken an integrated approach toward flood hazard and vulnerability evaluation of complex coastal systems as a result of extreme sea levels.

Solicited speakers: Dr. Alejandra Rodríguez-Enríquez (University of Central Florida, USA and Vrije Universiteit Amsterdam, The Netherlands), Dr. Tim Hermans (Utrecht University, The Netherlands)

Go to the top of the page



P05 The Meridional Overturning Circulation

Convener(s): Gerard McCarthy (Ireland)

Co-Convener(s): Ben Moat (UK) María Paz Chidichimo (Argentina) Elizabeth Maroon (USA)

Description
Encompassing the largest ocean currents in the circumpolar mixing engine of the Southern Ocean to the narrow gaps of throughflows and overflows from Indonesia to Iceland, the meridional overturning circulation (MOC) is a system of currents that links the world’s oceans. With its global reach from surface to abyss, the MOC substantially influences the Earth’s cycles of heat, freshwater, and carbon. The South Atlantic acts as a gateway for interocean exchanges between the North Atlantic, the Pacific and Indian oceans. In the South Atlantic Ocean heat is uniquely moved equatorward, where freshwater transports may be key to AMOC stability. The largest heat transport occurs in the North Atlantic, especially impacting the land masses bounding the North Atlantic and sub-Arctic. The most efficient ocean sink of anthropogenic carbon occurs in the North Atlantic, intimately entwined with the MOC through processes of deep water formation. MOC dynamics and variability drive key societal impacts such as coastal sea level, extreme events, temperature and precipitation patterns, and large-scale climate variability. This societal importance has motivated paleo-reconstructions, climate and ocean modelling on varying time and spatial scales, and in the past 20 years, direct observation of the MOC. We have learned a lot, but have also generated even more questions. For example, the recent AR6 IPCC report highlighted that, in contrast to ocean variables such as sea level and ocean heat content, where predicted and simulated rises due to anthropogenic climate change are being borne out by observations, the MOC has not conclusively shown a decline and in fact contradictions remain between observations and simulations through the 20th century. This symp welcomes abstracts on observations, theory, and numerical modelling of the MOC that address the burning questions that have yet to be answered and the timescales of change yet to be revealed.



Go to the top of the page



P06 IIOE-2: A Huge Step Forward for the Indian Ocean Sciences

Convener(s): Yukio Masumoto (Japan)

Co-Convener(s): Nick D'Adamo (Australia) Raleigh Hood (USA) Satheesh Shenoi (India)

Description
The Second International Indian Ocean Expedition (IIOE-2) was launched in December 2015 to advance our understanding of the physical, chemical, biological, geological and climatological aspects of the Indian Ocean to underpin its enhanced role on the socio-economy of the region. During the IIOE-2 period, vigorous observational, modelling, and theoretical research activities have been conducted, providing new data and insights on top of the achievements since the first IIOE 50 years ago. This symposium aims to summarize and highlight recent advances in our understanding of the Indian Ocean multi-disciplinary sciences. We invite papers on various aspects of the Indian Ocean, including, but not limited to, circulation and boundary currents, climate and monsoon variability, extreme events, air-sea interactions, ocean observations and data, impacts of climate change, biogeochemical processes, biology and ecology of the Indian Ocean. This session also invites papers describing programs, projects, activities and other significant contributions to showcase the ongoing or planned activities and the connection of ocean scientists with the broader agenda of sustainable development of oceans. We especially welcome contributions from international teams and consortia highlighting the power of international cooperation, capacity and knowledge sharing in a transdisciplinary context.



Go to the top of the page



P07 Unravelling New Aspects of Nutrient Cycling in the Ocean: Multi-proxy and Modelling Approaches

Convener(s): Malin Ödalen (Germany)

Co-Convener(s): Arvind Singh (India) Sarah Fawcett (South Africa)

Description
Understanding of ocean nutrient cycling is important as it plays a major role in ocean’s ability to regulate atmospheric concentrations of carbon dioxide and other greenhouse gases. There has been major advancement in our understanding of nutrient cycling in the last decade. These include challenging of the Redfieldian C:N:P ratio paradigm, technical issues related to N2 fixation estimates, the role of fixed nitrogen in oxygen minimum zones, revealing of deoxygenation at an unprecedented rate, and advancements in the study of trace metals. In this session, we invite the modelling and experimental studies related, but not limited to, elemental stoichiometry, impact of atmospheric inputs to ocean biogeochemistry, isotope tracer based studies to understand nutrient cycling, new advancements in techniques to measure N2 fixation estimates, fixed nitrogen in oxygen minimum zones, deoxygenation in the tropical and subtropical oceans and studies of trace metals and phosphorous cycling in the ocean.



Go to the top of the page



P08 Bringing Scientific and Technological Ocean Information Together for Advancement of Sustainable Development in the Framework of the UN Ocean Decade

Convener(s): Martin Visbeck (Germany) Christa von Hillebrandt-Andrade (Puerto Rico)

Co-Convener(s): Alexander Turra (Brazil) Delphine Lobelle (the Netherlands) Mujeeb Abdulfatai (Nigeria)

Description
The United Nations General Assembly established the Decade of Ocean Science for Sustainable Development (2021-2030) to facilitate the “science we need for the ocean we want“. The aim of the ‘Ocean Decade‘ is to bring together diverse scientists and stakeholders to facilitate the generation of new and integrated knowledge that informs policies that ensure a well-functioning, clean, productive, resilient, safe, sustainable and inspiring ocean and support the UN 2030 Agenda for Sustainable Development and associated Sustainable Development Goals. Covering 71% of the planet, the ocean is the largest component of the earth’s system. It provides approximately 20 percent of all animal protein consumed globally. Millions of people are at risk from ocean hazards or dependent on rainfall patterns driven by the oceans. It absorbs 25% of all carbon dioxide emissions and captures 90% of the excess heat. The ocean also furnishes cultural values and recreation is the seventh largest economy in the world. The ocean is one of the last frontiers for exploration on the planet and represents an exciting, adventurous and unexplored domain that can inspire the next generation of scientists, innovators, communicators, and policy makers. Hundreds of Decade Actions have been endorsed since 2021. This session invites papers describing programs, projects, activities and other significant contributions that highlight ongoing or planned actions and the connection of ocean scientists with the broader agenda of the ocean dimension of sustainable development. We especially welcome contributions from international teams and consortia highlighting the power of international cooperation, capacity and knowledge sharing in a transdisciplinary context.



Go to the top of the page





JOINT



JA01 Machine Learning in Geo-, Ocean and Space Sciences (IAGA, IAVCEI, IAHS, IASPEI, IAMAS, IAPSO)

Convener(s): Peter Wintoft (Sweden, IAGA)

Co-Convener(s): Hristos Tyralis (Greece, IAHS), Dave Reusch (USA, IAMAS), Istvan Szunyogh (USA, IAMAS), Fatma Jebri (UK, IAPSO), Gesa Maria Petersen (USA, IASPEI), Silvia Massaro (Italy, IAVCEI)

Description
Modern artificial intelligence (AI), machine learning (ML) and deep learning (DL) techniques are in the process of transforming many different fields of geosciences including for example seismology, the modelling of hydrological systems, space weather studies and oceanography. The progress in the development of ML algorithms combined with the increasing availability of geophysical data and computational power deliver a great promise for transformational advancements with the novel computational techniques. In this joined session, we invite presentations on a broad variety of AI, ML and DL methods, that both, establish new or improve commonly performed data processing, detection, clustering, interpretation, prediction and imaging tasks. In particular, we welcome contributions on the integration of ML techniques to improve the quality of oceanographic, geosciences and space sciences research approaches. The goal of the session is to establish the state of AI, ML and DL across multiple geoscientific fields, and to pave the path forward in taking full advantage of the exciting developments in ML/DL.



Go to the top of the page



JA03 Analogue Data for the Future: Preservation and Present-Day Utilization of Historical Data in the Geosciences (IAGA, IACS, IASPEI, IAHS, IAG, IAPSO)

Convener(s): Ciarán Beggan (UK, IAGA)

Co-Convener(s): Lauren Vargo (New Zealand, IACS), Kirsten Elger (Germany, IAG), Hisashi Hayakawa (Japan/UK, IAGA), Alberto Viglione (Italy, IAHS), Satheesh S.C. Shenoi (India, IAPSO), Josep Batlló Ortiz (Spain, IASPEI), Kristine Harper (Denmark, IAMAS), Roberto Carniel (Italy, IAVCEI)

Description
In many areas of geophysical and geological studies, long running measurements at a fixed location or over a wider region exist in analogue (physical) form including, amongst others, on photographic paper, in journals or as published tables. It is highly advantageous to convert analogue records to digital values, allowing modern computational techniques and analysis to be applied. However, it is often challenging to convert analogue records as formatting, the type of information recorded, accompanying metadata, and unit metrics change over time. Campaigns to digitize temperature or climate-related measurements have been very successful, especially with the recruitment of keen citizen scientists. However, more scientific formats, such as graphs with technical information or notation, are less amenable to generalist help. Historic analogue records frequently offer significant scientific implications, forming a baseline for analyses of long-term variability and/or short-term extreme hazards in multiple scientific aspects. In this context, it is important to compare these analogue records with one another and document their individual instrumental details for cross-calibrations. This session looks at methods for preservation, extraction, and analysis of historic analogue records, including by manual, image processing or machine learning techniques. This session also accommodates documentation of instrument detail and calibration methods for historical observations. This session welcomes new analyses using data that have previously been in analogue form, and case studies of long-term geophysical variability or individual short-term extreme events. We seek submissions from across all associations.



Go to the top of the page



JC05 Atmosphere-Ocean-Sea Ice Interactions: Physical and Chemical Processes (IACS, IAMAS, IAPSO)

Convener(s): Takenobu Toyota (Japan, IACS), Xin Yang (UK, IAMAS)

Co-Convener(s): Kim Strong (Canada, IAMAS), David Tarasick (Canada, IAMAS), William Perrie (Canada, IAPSO)

Description
The rapid change of polar climate over the past several decades has significantly affected the atmosphere-ocean-sea ice (AOI) interface and thereby interactions such as the exchanges of energy and chemical compounds through physical and chemical processes. These processes are linked together via chemical compound and particle exchanges at air-snow interfaces, snow processes, polynya formation, sea-ice production and deep-water formation. AOI interactions can be triggered also by short-term synoptic and mesoscale weather phenomena such as cold air outbreaks, katabatic winds, and polar lows. Thus, changes in polar weather and meteorology may influence the natural processes involved in polar atmospheric chemistry. However, the representation of these physical and chemical processes and interactions at different spatial and temporal scales remains a major challenge for current weather and climate models. This symposium aims to brings together researchers working in the areas of atmospheric chemistry (Part I) and physics (Part II) to demonstrate their latest findings, highlight gaps in our understanding of the physical and chemical aspects of polar climate and the polar surface boundary layer, and inspire further investigation and collaboration. Part I focuses on but is not limited to: lower tropospheric oxidizing capacity; ozone; reactive halogens and nitrogen; mercury; snow chemistry on sea ice, tundra and ice sheets; sea salt aerosol from blowing snow; and particulate chemistry. Part II focuses on but is not limited to: atmospheric and oceanic boundary layers, sea ice and snow-cover processes as well as global change related to the marine Arctic and Antarctic. Further focus is on snow cover modelling, ablation and accumulation on sea ice; and processes or parameterizations of physical and chemical exchange, and transport, including the influence of sub-mesoscale ocean dynamics, where observational challenges can be addressed. Contributions dealing with theoretical and observational studies, remote sensing, or numerical modelling are welcome.



Go to the top of the page



JG05 Geodesy for Climate Research (IAG, IAMAS, IACS, IAPSO, IAHS)

Convener(s): Annette Eicker (Germany, IAG)

Co-Convener(s): Bert Wouters (Netherlands, IACS), John T Reager (USA, IAHS), Adam Scaife (UK, IAMAS), Benoit Meyssignac (France, IAPSO)

Description
This symposium is dedicated to the use of geodetic measuring techniques for innovative climate and Earth system studies. Modern geodetic observing systems document a wide range of changes in the Earth’s solid and fluid layers at very different spatial and temporal scales related to processes as, e.g., the terrestrial and atmospheric water cycle, ocean and atmosphere dynamics, sea level, ice-mass balance, and glacial isostatic adjustment. Different time spans of observations need to be cross-compared and combined to resolve a wide spectrum of climate-related signals. Geodetic observables are also often compared with geophysical models and climate models, which helps to explain observations, test theories, evaluate simulations, and finally merge measurements and numerical models via data assimilation. We appreciate contributions utilizing data from diverse geodetic observation techniques including altimetry and gravimetry satellites, navigation satellite systems, satellite radio occultation and reflectometry, InSAR, VLBI, tide gauges, or remote sensing. We welcome studies that cover a wide variety of applications of geodetic measurements and their combination to observe and model Earth system signals in hydrological, ocean, atmospheric, climate and cryospheric sciences. Any new approaches helping to separate and interpret the variety of geophysical signals are equally appreciated. Contributions working towards any of the goals of the Inter-Commission Committee on "Geodesy for Climate Research" (ICCC) of the International Association of Geodesy (IAG) are very welcome in this symposium.



Go to the top of the page



JG06 Monitoring Sea Level Changes by Satellite and In-Situ Measurements (IAG, IAPSO)

Convener(s): Xiaoli Deng (Australia, IAG)

Co-Convener(s): Steve Nerem (USA, IAG), Fabio Raicich (Italy, IAPSO)

Description
Monitoring sea level changes at regional and global scales allows better understanding the climate system and supporting the design of adaption strategies to climate change. Sea level has been mainly measured by tide gauges and satellite altimeters. Coast-based tide gauge stations from around the world have for more than a century provided high temporal sea level records. Their number and lengths are being increased by sea-level data archaeology activities committed to discover and recover past observations. Satellite altimeters have been observing nearly global sea surface heights with revisit (or non-revisit) periods since the early 1990s. In addition, the spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) has provided an alternative sea level monitoring method. Data availability from the Gravity Recovery and Climate Experiment (GRACE) mission since 2002 and from the Argo system of autonomous profiling floats since 2005 allows to estimate the thermal expansion and mass transfer components in sea level rise. This IAG-led Joint JG6 Symposium invites researchers to present their studies in monitoring and observing sea level changes over multiple spatial and temporal scales using data from satellite altimetry, satellite gravimetry, GNSS-R, tide gauges, Argo and in-situ techniques.



Go to the top of the page



JG07 Modern Gravimetric Techniques for Geosciences (IAG, IAVCEI, IAPSO, IASPEI)

Convener(s): Jürgen Müller (Germany, IAG)

Co-Convener(s): Chris Hughes (UK, IAPSO), Rudolf Widmer-Schnidrig (Germany, IASPEI), Emily Montgomery-Brown (USA, IAVCEI)

Description
New tools for gravimetric Earth observation on ground and in space are being developed in quantum physics that enable novel applications and measurement concepts in the geosciences. We invite presentations to illustrate the principles and state of the art of these novel techniques, like quantum gravimetry, relativistic geodesy with clocks or chronometric levelling, advanced intersatellite tracking and others. These advanced techniques will open a door to a vast bundle of applications. Terrestrial mass variations can be monitored at various scales providing unique information on the related climate change processes. We especially welcome presentations on further applications of those new methods in the geosciences. For example, quantum gravimeters are beneficial for monitoring mass changes, e.g. at volcanos or of the local groundwater. Clock networks provide differences of physical heights and can monitor mass and height variations, e.g., at tide gauges, to disentangle land deformation and sea level rise. Based on that advanced quantum technology, improved observation of mass changes from space will give access to smaller (but relevant) effects like those related to permafrost thawing.

Solicited speaker: Daniele Carbone (INGV - Sezione di Catania, Osservatorio Etneo, Italy) - Experimentation of new technologies for volcano gravimetry at Mt. Etna

Go to the top of the page



JH01 New, Large, and Open Data for the Earth and Environmental Science Community (IAHS, IAPSO, IACS, IAGA, IASPEI)

Convener(s): Heidi Kreibich (Germany, IAHS)

Co-Convener(s): Charles Fierz (Switzerland, IACS), Masahito Nosé (Japan, IAGA), Elena Tel Pérez (Spain, IAPSO), Florian Haslinger (Switzerland, IASPEI)

Description
Data is essential for understanding, modeling and managing earth and environmental processes, their interactions and their dynamics. Therefore, the acquisition, management and use of data is a central component of all earth and environmental sciences. New data sources and advanced monitoring methods, including new sensors and instruments on the ground, at sea and in the air, web crawling technology and citizen science, as well as the strong trend towards open data and data sharing, open up fantastic opportunities but also bring challenges. There are concerns, for example, about ensuring and appropriately documenting data quality in particular with respect to ‘new data’, as well as about creating sufficient incentives for monitoring, data sharing and monitoring downstream usage (attribution) with persistent identifiers, or about adequate long-term curation of raw data and derived products. The aim of this symposium is to present and discuss new opportunities, but also challenges of these developments. We want to learn from each other how to support and implement the UNESCO recommendation for open science, the WMO Unified Data Policy, and the IOC/IODE recommendations in the framework of the UN Ocean Decade. For example, issuing and managing persistent identifiers throughout the data lifecycle, building FAIR and CAREful 'open' services, enforcing proper citation, are approaches that help achieving the vision of FAIR (Findable, Accessible, Interoperable and Reusable) and CARE (Collective benefit, Authority to control, Responsibility and Ethics) data that support quality action and research in the open science environment.



Go to the top of the page



JH04 Anthropocene: Perspectives From and Within Geophysics (IAHS, IAMAS, IACS, IASPEI, IAVCEI, IAG, IAPSO)

Convener(s): Christophe Cudennec (France, IAHS)

Co-Convener(s): Richard Essery (UK,IACS), Melita Keywood (Australia, IAMAS/iCACGP), Mark Lawrence (Germany, IAMAS/iCACGP), Domenico Giardini (Switzerland, IASPEI), Roberto Sulpizio (Italy, IAVCEI), Catia Domingues (UK, IAPSO)

Description

As the International Union of Geological Sciences considers the Anthropocene from a stratigraphic perspective, and as other communities are considering a wider definition (see the ICSU-ICS intermediate synthesis in 2016, https://www.sciencedirect.com/journal/global-environmental-change/vol/39/suppl/C) IUGG has to reconsider the concept and to renew its contribution. This session welcomes any communication in that perspective, including about great acceleration, planetary boundaries, change detection and attribution, climate change and other changes to the atmosphere-ocean-cryosphere-hydrosphere system, such as erosion-sedimentation, man-induced seismicity and man-driven geomorphology, along with related farther-reaching topics such as One Health; and assessing these issues and science-informed policy options for mitigation and adaptation together with the socio-geosciences.





Go to the top of the page



JH06 Education & Outreach in Geosciences (IAHS, IASPEI, IAGA, IAG, IAVCEI, IACS, IAMAS, IAPSO)

Convener(s): Christophe Cudennec (France, IAHS)

Co-Convener(s): Fabien Maussion (Austria, IACS), Markku Poutanen (Finland, IAG), Katia Pinheiro (Brasil, IAGA), Tereza Kameníková (Czech Republic, IAGA), Thomas Spengler (Norway, IAMAS), Angela Pomaro (Italy, IAPSO), Raju Sarkar (Bhutan, IASPEI), Natalia Pardo (Colombia, IAVCEI)

Description
Sharing scientific knowledge and methods through education and outreach is of high importance to support the societal transition in terms of sustainability, development, and security. Initial and life-long education, training in operational services, and capacity development within institutions and society are facing many challenges, when dealing with environmental and societal changes, disaster risk reduction, and the evolution of techniques along the data – information – knowledge – decision support chain. This symposium welcomes conceptual developments as well as practical study cases from geoscientists, as well as from didacticians and knowledge brokers. The variety of approaches across disciplines and across the diversity of the geosciences will provide a collective overview on education and outreach activities the basics and variants in our fields. The symposium also encourages sharing of lessons learned from the enhanced digitization induced by the pandemic and from the ongoing digital revolution, showcasing perspectives of the knowledge society and the Open Science paradigm.



Go to the top of the page



JM02 Tropical-Polar Interactions, Arctic Amplification and Its Influence on Midlatitude Weather (IAMAS, IACS, IAPSO)

Convener(s): Xichen Li (China, IAMAS)

Co-Convener(s): Anais Orsi (Canada, IACS), Lee Welhouse (USA, IAMAS), Sheeba Nettukandy Chenoli (Malaysia, IAMAS), Jonathan Wille (USA, IAMAS), Matthew England (Australia, IAPSO)

Description
The Earth’s tropical and polar regions are not isolated climate systems and are in a constant cycle of feedback regarding heat, moisture, and momentum exchanges. The interactions between polar regions and lower latitudes play a crucial role in the earth climate system. On the other hand, Arctic and Antarctic experienced dramatic climate changes in recent decades. The surface temperature trend over the Arctic is more than twice as fast as the global warming rate, associated with a rapid Arctic sea-ice retreat, which is known as the Arctic Amplification. Rapid Arctic changes contribute to a series of climate changes in mid-latitudes. This symposium invites discussions on the rapid climate changes over the Arctic and Antarctic regions and their impacts on lower latitudes, as well as the teleconnections between tropics/mid-latitudes and the polar regions and resulting impacts on the polar atmosphere-ocean-sea ice system. An understanding of tropospheric and stratospheric pathways of the tropical-polar interaction is essential for both short-term and seasonal forecasting along with calibrating future climate change projections. The Arctic amplification has broad implications on the cold winter over the Eurasian continent and extreme weather events over the Northern Hemisphere during both winter and summer. These will be the main focus of this symposium. Topics of discussion welcomed in this symposium include any studies that connect the lower latitudes and the higher latitudes such as empirical and modelling approaches to Rossby wave and jet stream dynamics, stratosphere-troposphere coupling, meridional moisture transport, ocean-atmospheric linkages, and how these processes impact the earth climate system in the past, present, and future. If a butterfly flaps its wings in the tropics or polar regions, can we model its impacts in the Arctic and Antarctic or lower latitudes?



Go to the top of the page



JM05 Earth System Models: Assessing the Earth System’s State and Fate From Regional to Planetary Scales (IAMAS, IAHS, IACS, IAPSO, IAVCEI?)

Convener(s): François Massonnet (Belgium, IAMAS)

Co-Convener(s): Sophie Nowicki (USA, IACS), Richard Petrone (Canada, IAHS), Anna von der Heydt (Netherlands, IAPSO)

Description
Earth System Models (ESMs) have become a cornerstone in geosciences, being used for process understanding, detection and attribution of climate signals, prediction from sub-seasonal to millennial time scales, regional downscaling, and impact analyses. Each generation of ESMs presents refinements compared to the previous one: from one cycle of model development to the next, spatial resolution increases, more components of the Earth system are included, and new processes become explicitly represented. Also, observations and data-driven approaches are increasingly used within ESMs to better predict high-impact events. This symposium encourages contributions dealing with the many facets of Earth System Model development, evaluation, and application, including but not limited to: modeling results from the Coupled Model Intercomparison Project Phase 6, development and assessment of models making use of recent Earth observations from ground- and space-based measurements, prediction of climate on seasonal to centennial timescales, climate change detection and attribution, regional-scale climate modeling and process analysis, high-resolution climate modeling, and subgrid scale parameterization development including statistical and machine learning techniques. Submissions on the latest advances in coupled aspects of the Earth system are particularly encouraged.



Go to the top of the page



JP01 Tides (IAPSO, IAHS, IAGA, IASPEI, IAG)

Convener(s): Joanne Williams (UK, IAPSO)

Co-Convener(s): Jean-Paul Boy (France, IAG), Nick Pedatella (USA, IAGA), Christophe Cudennec (France, IAHS), Philip Woodworth (UK, IAPSO), Evgeny Podolskiy (Japan, IASPEI)

Description
The session will be open to submissions on any aspect of the tides of the ocean, estuaries, lakes, solid earth, and atmosphere. Tides are fundamental to many geophysical processes, driving ocean mixing, contributing to coastal erosion and sediment transport, and influencing ocean biogeochemistry and ecosystems. Tides affect port operations and coastal infrastructure and modulate the severity of storm surges and coastal flooding. Energy from ocean tides is harnessed for electricity generation. In the cryosphere, tides are also important, including for sea ice dynamics, transport and mixing processes. Icy worlds are not only affected by tides but also modulate them. For example, sea ice dampens tidal amplitudes and currents. At the same time, tides regulate the growth of sea ice, contribute to melting of glacial/sea ice, and can be a pacemaker of glacier flow, deformation, and fracture. Interannual variability in the tides may arise from variations in sea ice extent, changes in ocean stratification or regional climate processes. Tides also play an important role throughout Earth's atmosphere, as well as in other planetary atmospheres. Coastal, regional and global models of tides and internal tides continue to develop, as do techniques for observing tides and reconstructing historical tidal data. We welcome presentations on these methods, and discoveries about past and future long-term changes in tides, tidal variability, tidal dynamics, and the impacts of tides.



Go to the top of the page



JP02 Arctic Ocean Physics and Biochemistry in a Changing Climate (IAPSO, IACS)

Convener(s): Agatha de Boer (Sweden, IAPSO)

Co-Convener(s): Martin Vancoppenolle (France, IACS), Sheldon Bacon (UK, IAPSO), Igor Polyakov (USA, IAPSO), Zoe Koening (Norway, IAPSO)

Description
The United Nations declared Climate Change as the defining challenge of our time. The most vulnerable region on Earth is the Arctic, which is warming at double the global mean rate. Given the Arctic’s frontline importance, a large scientific investment has recently been made to understand and predict the Arctic Ocean’s heat content, freshwater content, and its sea-ice state. Arctic modelling efforts have been improved and new observations have been added from ship data, moorings, and satellites. Nevertheless, models have difficulty to simulate the Arctic’s climate state - simulations of the sea ice cover in recent decades tend to underestimate the observed rapid decline and predictions of when the Arctic will be ice-free vary widely. In order to meet the challenges of the future, we may need to accelerate progress by true trans-disciplinary science. Thus, we invite abstracts covering observations, theory, and modelling of the physics and biochemistry of the ocean and sea ice in the Arctic Ocean and its neighbouring seas. Abstracts are also encouraged across a large time frame, from past Arctic Ocean states, to the present state, as well as predictions of the future. Abstract that cover more than one of these aspects are particularly welcome.

Solicited speakers: Dirk Notz (University of Hamburg, Germany), Celine Heuze (Gothenburg University, Sweden), Marie Louise Timmermans (Yale University, USA)

Go to the top of the page



JP03 Physical and Biogeochemical Ocean and Ice Processes in the Southern Ocean: Observations, State Estimation and Modeling (IAPSO, IACS)

Convener(s): Joellen L. Russel (USA, IAPSO)

Co-Convener(s): Martin Vancoppenolle (France, IACS), Adele Morrison (Australia, IAPSO), Ilana Wainer (Brazil, IAPSO)

Description
Quantification and simulation of the physical and biogeochemical processes that determine the Southern Ocean and its ice cover’s mean state, variability, and response to external forcing are critical to our understanding of the climate system as a whole, and for reducing uncertainties in climate projections. Advances in data collection, state estimation and modeling capabilities have finally established the necessary infrastructure to permit a deeper understanding of the Southern Ocean’s processes that are relevant to climate. This session will present new results based on modeling and/or observational efforts that investigate ocean and ice processes in the Southern Ocean, in terms of physical and biogeochemical processes, as well as ocean-ice-atmosphere interactions.



Go to the top of the page



JP04 Ice Sheet-Ocean Interactions: Challenges and Insights From Theory, Observations and Modelling (IAPSO, IACS, IASPEI)

Convener(s): Felicity McCormack (Australia, IAPSO), Isabel Nias (UK, IACS)

Co-Convener(s): Donald Slater (UK, IACS), Sue Cook (Australia, IACS), Yoshihiro Nakayama (Japan, IAPSO), Helene Seroussi (USA, IACS/IAPSO), Rick Aster (USA, IASPEI)

Description
Ocean-driven melting of the Greenland and Antarctic Ice Sheets is accelerating and is a key process contributing to the significant uncertainty associated with estimates of future sea level rise. Ice sheet-ocean interactions range across spatial scales: from the microscale processes governing melt at the ice-ocean boundary layer, through the buoyancy-driven circulation beneath ice shelves and at tidewater glaciers, to large-scale fjord and open ocean circulation patterns; and across a range of timescales: in response to seasonal fluctuations in warm water supply to the ice-ocean front to multi-decadal and centennial oscillations in response to intrinsic ice and ocean dynamic processes. This symposium brings together researchers working in the areas of interactions between ice sheets, ice shelves, tidewater glaciers, icebergs, and the ocean, and covering a range of spatial and temporal scales that are relevant to ocean-driven melting of ice. The session will cover theoretical, observational, and modelling disciplines. Studies that offer new insights and technologies to improve understanding of ice-ocean interactions are particularly welcomed.



Go to the top of the page



JP05 Tsunamis (IAPSO, IASPEI, IAVCEI, IAMAS, IAG)

Convener(s): Yuichiro Tanioka (Japan, IASPEI)

Co-Convener(s): Maitane Olabarrieta (USA, IAMAS), Diana Greenslade (Australia, IAPSO), Maria Ana Baptista (Portugal, IAPSO), Alexander Rabinovich (Russia, IASPEI), Mohammad Herdarzadeh (UK, IASPEI), Yuichi Nishimura (Japan, IAVCEI)

Description
Tsunamis are one of the most devastating natural disasters, with the potential to cause tremendous damage along coastlines around the world. Catastrophic tsunami events of this century, such as the 2004 Indian Ocean and 2011 Tohoku tsunamis, have demonstrated the increasing risk of disasters for coastal population and infrastructure. As a response to these deadly tsunamis, many new tsunami forecast and warning capabilities have been developed and implemented. The 2018 Sulawesi and Krakatau tsunamis have demonstrated that tsunamis caused by mechanisms other than great earthquakes must also be considered. The more recent 2022 large volcanic eruption in Tonga generated air-sea coupled wave causing damage along the coast around the Pacific. Sea-level rise caused by global warning also presents new challenges for tsunami science. The IUGG symposium will discuss all aspects of tsunami science including: theoretical and numerical research on tsunami generation and inundation; development of forecast and warning methods; investigation of geologic records of past events; response, mitigation, and recovery strategies; observational studies, including collation of historical observations; and hazard and risk studies from tsunamis generated by earthquakes, landslides, volcanic eruptions. The symposium will also include a special session on meteo-tsunamis, including the air-sea coupled wave due to the 2022 Tonga eruption, in association with IAMAS.



Go to the top of the page



JP06 Electromagnetic Studies of the Ice and Ocean System (IAPSO, IACS, IAGA)

Convener(s): Jan Saynisch-Wagner (Germany, IAPSO)

Co-Convener(s): Kenichi Matsuoka (Norway, IACS), Ingo Wardinski (France, IAGA), Neesha R. Schnepf (USA, IAGA), Graham Hill (Czech Republic, IAGA), Christopher Irrgang (Germany, IAPSO)

Description
Electromagnetic signals are sensitive to a wide range of oceanographic and cryospheric system properties, e.g., salinity, temperature, aggregate state, velocity or transport. Electromagnetic observations come from a range of sources: stationary magnetometer observatories providing long time series of data; tracks from ships, gliders, buoys, or planes; measurement expeditions; ocean bottom magnetometers; and observations from passive deep sea telecommunication cables. The session invites studies that utilize the available data to infer information about the state of, or changes in, the ocean-cryosphere system. In addition, we invite numerical or theoretical studies that focus on the respective sensitivities.



Go to the top of the page



JS05 Real-Time GNSS Data and Products Usage: Interoperability and Management Challenges (IASPEI, IAG, IAVCEI, IAPSO)

Convener(s): Angelo Strollo (Germany, IASPEI)

Co-Convener(s): Antonio Avallone (Italy, IAG), Yuhe Tony Song (USA, IAPSO), Clinton John (Switzerland, IASPEI), Giuseppe Puglisi (Italy, IAVCEI)

Description
The Internet of Things continues to expand with reduced restrictions throughout the Urban Space and enables reliable and simple real-time data streaming even from very remote areas. Such technological developments, alongside the growth in cloud computing, have enabled real-time streaming of GNSS data and products. GNSS data today has mature standards (i.e. RTCM formats) for a wide spectrum of applications (civil and military navigation, science, commercial purposes). On the other hand, GNSS products are domain-specific, requiring expertise of scientists and technical personnel. In the last decade, real-time GNSS products have offered new opportunities for monitoring natural hazards in real-time (i.e. earthquakes, volcanoes, landscapes). To become widely available within existing domain specific processing pipelines these products must be available via standard formats and services. A typical example is real-time satellite orbit and clock data which enables several real-time positioning flavours, from standard precise point positioning and relative positioning to regional augmentation and seismic and geodetic data fusion. These products, available in real-time and via standard formats and services (e.g., seedlink and mseed for seismology) could be game changers within the context of early warning systems for tsunamis, landslides, volcanoes, and other natural disasters, as well as for infrastructural monitoring. This interdisciplinary symposium welcomes contributions outlining recent developments in real-time GNSS applications, in particular the usage of real-time data and products within the geophysics domain. This includes: processing techniques developed for real-time products, augmentation through the addition of new data; data management policies; use case examples, in particular those fostering interoperability; adoption or development of new standard formats. The aim of the symposia is to remove the barriers between scientific domains, foster interoperability, and to welcome discussions that lead towards interdisciplinary technical discussions around common formats and interoperability.



Go to the top of the page



JV02 Dispersal of Volcanic Particulates in the Atmosphere and the Oceans (IAVCEI, IAMAS, IAPSO)

Convener(s): Silvia Massaro (Italy, IAVCEI)

Co-Convener(s): Markku T. Kulmala (Finland, IAMAS), Nadia Lo Bue (Italy, IAPSO)

Description
Among the variety of volcanic processes, explosive eruptions are of particular interest for the scientific community, in the light of mitigating their impact on human lives and activities. In fact, the eruption columns formed during these episodes may represent a great hazard for our society. On the ground, livelihoods and infrastructures can be extensively damaged by the fall of pyroclasts of various sizes and shapes. In the air, volcanic clouds pose a serious threat to aviation safety with immediate and long-term effects on aircraft functionalities. In the oceans, volcanic particles may induce both pollution and fertilization, influencing the biology and chemistry of the water. Volcanic hazard assessment is therefore a fundamental step in the evaluation of the risk associated with the presence of ash particles into the atmosphere and the fall of tephra on the ground. In this session we welcome contributions combining numerical modelling, field observation and monitoring of volcanic ash clouds, supporting the assessment of their hazard.



Go to the top of the page